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SUMMARY

A review is made of recent NASA research on performance of propulsive

exhaust nozzles and jet-airframe interference. The importance of off-design

performance and nozzle-installation effects is emphasized. Extensive refer-

ence is made to papers describing specific research.

INTRODUCTION

As early as a decade ago, the NACA had made comprehensive studies of air-

craft Jet-engine exhaust-nozzle performance for nozzles of conventional type

such as convergent-dlvergent ejectors and isentropic spike nozzles. Although

the performance penalties associated with off-design operation and jet-airframe

interference were recognized problems, primary attention had been directed

toward achievement of maximum performance at specified design operating con-

ditions. Representative papers on'early research on exhaust nozzles are cited

in references 1 to 4.

More recently, development of the variable-sweep concept for aircraft

wings and increasing interest in tactical fighter and supersonic transport

aircraft have revived general interest in aircraft propulsion, especially in

the off-design performance of exhaust nozzles, and in the mutual influence

between the propulsion system and the airframe. Research on aircraft propul-

sion stemming from these interests has produced a sizable volume of informa-

tion, some of which has not received wide distribution. It is the purpose of

this paper to present a brief r_sum_ of recent NASA research on exhaust noz-

zles and jet effects.
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DISCUSSION

Performance Sensitivity to Critical Parameters

Fig_tre I illustrates the importance of exhaust-nozzle performance in rela-

tion to other factors which determine overall aircraft performance. The chart

is based on a 3500-nautical-mile mission for a 450 000-pound supersonic trans-

port aircraft cruising at a Mach number of 2.7. Increment in range is shown as

a function of percentage change in a specified parameter. The parameters con-

sidered are: inlet pressure recovery, propulsion package weight# airframe lift-

drag ratio, and nozzle gross thrust coefficient. For example, a 1-percent

improvement in nozzle gross thrust coefficient will increase the range by

lO0 nautical miles, in this case by about 3 percent. It is obvious also that

nozzle performance has much more influence on aircraft range than the other

factors considered. (See ref. 5-)

Supersonic Transport Fuel Usage

Fuel usage for a typical supersonic transport mission is shown in figure 2.

Inasmuch as one-half of the fuel is used in cruise at M = 2.7, the highest

possible nozzle performance must be achieved at that design condition. Note,

however, that 3_ percent of the fuel (and perhaps the l_-percent reserve fuel)

is used in the off-design conditions of take-off, climb, acceleration, letdown,

_ndloiter, so that high performance of the nozzle in off-design operation is

also of prime importance and should be achieved without compromising cruise

performance.

The expression "off-design" is used herein to indicate values of airspeed

and nozzle pressure ratio considerably different from those for which the nozzle

design is optimized. For supersonic transPort nozzles, "off-design" frequently

implies operation at subsonic and transonic speeds. In this sense, much of the

exhaust-nozzle research at Langley has been directed toward study of off-design

performance.

Partial Scope of Research on Isolated Nozzles

Figure 3 indicates the scope of some recently completed and current NASA

research on isolated exhaust nozzles. The principal types of propulsive noz-

zles, classified broadly as "open" and "plug," are indicated in this figure

along with special features having general application. Any of these nozzles

which can provide for efficient expansion of the exhaust gases at high pressure
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ratio can be designed to give good performance at a specified design condition.
The merit of any particular nozzle type, however, frequently depends upon its
ability to operate efficiently at conditions other than design. This quality
usually requires variable geometry. Research on terminal fairings for exhaust
nozzles is treated in references 6 to ll. In this paper, no attempt is madeto
summarizethe research on noise suppressors (see refs. 12 to 16) or on thrust
reversers (see refs. 17 to 27).

Research Models

Figures 4 and 5 present composite photographs of jet-exit research models
investigated in the Langley 16-foot transonic tunnel. Each model incorporated
a hydrogen-peroxide gas generator to produce a hot jet properly scaled to simu-
late the engine exhaust. (See refs. 28 to 30.) Each investigation pertained
to the effects of jet operation on afterbody pressures and drag, on aircraft
stability and control, and, in somecases, on temperature of airframe components
washedby the jet. Description of work conducted with these models is pre-
sented in the references as follows: F-11F, references ll, 213 31, and 32;

F-lO1, references 33 to 35; A-2F(A-6)3 references 36 and 37; wing-nacelle jet,

reference 38; isolated nacelle, reference 39; and clustered jet exits, refer-

ence 40. The nozzle types indicated in figure 3 are representative of many

configurations which have been investigated on test rigs similar to the iso-

lated nacelle shown in figure 5.

Convergent-Divergent Ejector Nozzles

In the field of aircraft propulsion, the convergent-divergent ejector noz-

zle is ssnetimes regarded as a standard by which other nozzles may be evaluated.

In figure 6, the thrust efficiency of a convergent-divergent nozzle is presented

as a function of flight Mach number. Thrust efficiency is defined as the ratio

of nozzle gross thrust minus external drag to ideal thrust. (The drag term

also includes the ram drag of secondary air.) The shaded region in this figure

represents the band of efficiency within which convergent-divergent nozzles for

the supersonic transport can be designed to operate. (See ref. 41.) At design

conditions near a Mach number of 3.0, the nozzle afterbody can be made cylin-

drical, in which case there is no pressure drag, skin friction drag is small,

and thrust-minus-drag performance is near ideal. To achieve high performance

over a wide range of speeds, the nozzle must incorporate variable geometry as

indicated in the sketches and have the ability to vary expansion ratio from a

value of unity at low speeds to about 4.0 at a Mach number of 3.0. At off-

design conditions, however, especially at subsonic cruise or loiter and for

transonic acceleration# the boattail angle (and, therefore, drag) is large, and

thrust-minus-drag performance is reduced accordingly. Even though the variable-

geometry convergent-divergent ejector nozzle will operate with high efficiency

over a wide range of speeds, this type of nozzle, in general, is mechanically

complex and heavy. Results of research on miscellaneous convergent-divergent

and ejector nozzles are presented in references 2, 3, 39, and 41 to 61. Boat-

tail and afterbody drag pertinent to variable-geometry convergent-divergent

nozzles is discussed in references 62 to 70.
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Blow-In-Door Ejector Nozzle

Features of the blow-in-door exhaust nozzle system, which makesuse of
base ventilation to improve off-design performance, are illustrated in fig-
ure 7. The nameis derived from the free-floating flaps, or blow-in doors,
which are located Just upstream of the ejector shroud. At subsonic and tran-
sonic speeds where the jet total-pressure ratio is low, the doors are forced
inward by the higher external pressure. External air flows into the ejector
and reduces the overexpansion of the primary exhaust. At higher Machnumbers,
the higher pressure inside the shroud forces the doors to a closed position and
the system functions as a convergent-divergent ejector. Because these doors or
auxiliary inlets are upstream of the nozzle exit, it might be expected that
this type of nozzle would be sensitive to installation effects or to unsymmet-
rical external flow.

The solid-line curve in figure 7 presents subsonic and transonic data
obtained with an isolated nozzle operating in axisymmetric external flow (ram
drag of secondary air not included in performance parameter). The dashed-line
curve showsperformance of a nozzle of the samedesign when installed as a twin
cluster in an aircraft configuration and operating in the aircraft flow field.
A comparison of nozzle performance for the isolated and installed cases shows
that the performance for the installed nozzles is lower than that for the iso-
lated nozzle by about 2 percent. A small part of this loss was internal and was
caused by lower pressures in the secondary air passage which forms an internal
base. Most of the loss, however, is due to increased external drag. The
severe drop in _erformance at transonic speeds for both the isolated and
installed nozzles is due to rapid increase in drag on the doors and shrouds in
this speed range. At higher Machnumbers, the doors close; the performance
improves and has been shownto fall within the shadedband. The curves showing
performance at subsonic and transonic speeds are data for a specific engine
operating at specified values of pressure ratio. The shadedband showing
supersonic performance is intended to indicate general capability of the blow-
in-door type of nozzle. Performance of several blow-in-door nozzle designs is
presented in references 71 to 73, and data pertinent to auxiliary inlets for
supplying nozzle secondary air flow are given in reference 74.

Plug Nozzle With Terminal Fairings

Typical performance for an isentropic plug nozzle with and without terminal
fairings is presented in figure 8. An isentropic plug nozzle can generally be
designed to give good performance at any specified operating condition. For
example, the nozzle without terminal fairings shownin the upper left-hand side
of figure 8 was designed for a pressure ratio of lO corresponding to operation
of a turbojet at Mach1.8. At speeds near this value the performance of this
nozzle is good, as shownby the solid-line curve. Becausethe basic design of
an isentropic plug nozzle requires rather abrupt curvature of the outer lip,
lip drag is high, especially at transonic speeds, and performance is corre-
spondingly low. At speeds above the design value_ the nozzle is underexpanded
and performance suffers.
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One approach toward improving the off-design operation is through the use
of terminal fairings as illustrated in the upper right-hand side of figure 8.
The terminal fairings are streamlined bodies which fair into the rearward-
facing surface of the nozzle outer lip and effectively reduce afterbody boat-
tail angle. These fairings reduce lip drag, permit venting of the base at low
speed, and provide additional expansion surface for the jet at high speeds.
The performance of the M = 1.8 design nozzle with the terminal fairings is
shownby the dashed line. Subsonic and transonic performance is improved
through reduction of lip drag; peak performance is at about the samelevel, but
design speed and pressure ratio have been increased because the effective expan-
sion ratio has been increased. The performance of plug and other type nozzles
with and without terminal fairings is presented in references 6 to ll, and 75
to 82.

Long-ConePlug Nozzle

The long-cone plug nozzle, illustrated in the sketches in figure 93
attacks the problem of lip drag by removing most of the lip. The essential
elements of the nozzle are a moreor less cylindrical shroud surrounding a
relatively long straight conical plug. The upper left-hand sketch in the fig-
ure showsthe nozzle in the off-design or subsonic configuration. The shroud
lip has a very shallow boattail angle and terminates near the maximumdiameter
of the plug. Subsonic performance of the nozzle with full length plug as shown
by the solid line is excellent. The plug length can be reduced by one-half
(short-dash line) with only a small penalty. Further reduction in plug length
results in rather drastic losses. The performgnce of this subsonic configur_-
tlon is generally poor at speeds greater than a Machnumber of 1.O because of
reduced pressure on the plug (ref. 83).

For transonic and supersonic operation, this type of plug nozzle must
incorporate a translating shroud as indicated in the upper right-hand sketch
so that the configuration becomesan annular convergent-divergent nozzle. With
translation of the shroud scheduled to provide expansion ratio appropriate to
Machnumber and pressure ratio, the performance at supersonic speeds is com-
petitive with that of _ convergent-divergent nozzle. Although good performance
can be obtained over a wide range of Machnumber, the cone plug nozzle poses a
mechanical design problem whenvariation of nozzle throat area is required, as
for afterburning.

Concave-PlugNozzle

Figure lO presents typical performance of a concave-plug nozzle. TL.s
nozzle design concept represents an extreme approach to weight reduction in a
plug-type nozzle 3 in that most of the plug is eliminated. The central plug
base is contoured to promote a vortex-ring type of recirculating flow. This
recirculating flow acts as a gas plug which is pressurized by the converging
flow of the annular jet. Pressure acting on the concave-plug base increases
with discharge angle e and with increasing total pressure of the jet.



In the lower part of figure lO, performance is shownfor two schedules of
jet total-pressure ratio. The higher values correspond to the operating
pressure-ratio schedule for a turbojet engine, the lower values are for a turbo-
fan. Whenused with a turbojet engine, the concave-plug nozzle is at least com-
petitive with other type nozzles. Performance is generally poor at transonic
speeds and low pressure ratio, the loss being associated with partial entrain-
ment of the recirculating base flow by the annular jet which results in reduced
base pressure. Performance can be improved by the use of terminal fairings.
The performance of various concave-plug nozzles is presented in references 8
and 84 to 87.

Clustered Jet Exits

In multiengine airplane configurations, it maybe advantageous sometimes
to install the engines in one package rather than place individual pods along
the fuselage or on the wings. One of the models used to study afterbody drag
and jet interference effects of clustered jet exits is shownin figures 5
and ll. This model represents a side-by-side cluster of four engines having
convergent-divergent nozzles with 5° boattail angle. In figure ll someof the
results obtained with this model are comparedwith those from an isolated
nozzle. The solid-line curve shows performance for the inline clustered jets,
the short-dash curve is for the staggered jets, and the long-short-dash curve is
for an isolated nozzle. The external drag of the in-line clustered jet after-
body was found to be about double that of four isolated nacelle nozzles through-
out the Machnumber range of the tests. This increase in external drag reduced
performance by as muchas 3 percent. Staggering the two inboard engines had a
slight beneficiaT effect at supersonic speeds because of the favorable inter-
ference from the outboard jet exhaust on the boattail of the inboard nozzles.
In making a choice between the use of clustered or isolated engines, the rather
considerable increase in afterbody drag for the clustered engines would have to
be weighed against the possible advantages of this arrangement. Data pertinent
to clustered jet-exit arrangements are presented in references 40 and 88 to 93.
Related information on jet-airframe interference is given in references 94
to 102.

CONCLUDINGREMARKS

A brief review of someof the recent NASAresearch on exhaust nozzles and
jet effects has been presented. In summary, there are several points to be
emphasized. Although isolated nacelle investigations are valuable in studies
of th_ effects on nozzle performance of the external flow field and of para-
metric changes, the ultimate evaluation of exhaust-nozzle performance should be
madewith nozzles incorporated in the aircraft configuration. Furthermore, in
the selection of an exhaust system, performance at off-design operating con-
ditions as well as at design cruise must be considered. Compromisesbetween
these performance characteristics and both exhaust system weight and complexity
of operation must be evaluated in order to optimize airplane performance.
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